Hardware Specification


Processor Core Design

Introduction

In the following section we will outline the design of the hardware, specifically the detailed design of the ASIP.  The initial aim will be to develop a working processor model running on the FPGA, capable of executing short sequences of hand-written assembly code.  From here, we will attempt to re-target the C compiler, GCC to compile programs of a higher degree of complexity for our processor.  Finally, we intend to tune the processor to the encryption and compression applications.  This will be done in the form of customising the instruction set as described in [Generating Instruction Sets and Microarchitectures from Applications]
 

Hardware Overview

We have decided to implement a generic RISC family core as these are well documented, and existing implementations of GCC can be converted to accommodate the customised instruction set.  As described in the diagram, it is currently thought that after several iterations of the design loop the processor will no longer be classed as a RISC architecture, but will have evolved into a Very Long Instruction Word (VLIW) architecture.  Using VLIW architecture will enable a higher degree of parallelism to be exploited on the FPGA, by executing certain instructions (that would otherwise be serial) in parallel.  

A RISC processor model was chosen due to popular conjecture that approximately 80% of the code is executed  using 20% of the instructions.  Speed considerations are also a factor, as complex operations require more time and space to execute.  By selectively refining the most commonly used instructions, we can aim to optimise these, and then synthesise any further operations from these initial ones. Space considerations were also a factor in deciding upon a suitable instruction set.  Although CISC architecture substantially reduces the overall program size, it is important to note that RISC significantly decreases the number of gates required on the FPGA.

Harvard Architecture

The core will implement a Harvard architecture, which uses separate data and program buses.   This architecture is less common than Von Neuman architecture, due to the additional number of pins required when implementing the processor in real hardware.  This is not a consideration in the FPGA implementation, as the number of pins is fixed.  The perceived main advantage to implementing a Harvard architecture is the performance gain achieved by separating the interests of data and processor instructions.  This allows both data and instructions to be written and read simultaneously, with neither being restricted by a shared bus.

Memory Banks

The FPGA has four memory banks, each of two megabytes.  We believe that one bank should be sufficient to store the program itself, leaving another three memory banks to be used for data as required.  These three banks will be accessed as a paged virtual memory system, and possibly addressed as one logical memory block.  This makes the addressing of data from within programs simpler, although adds a small amount of complexity to the processor itself.

Registers

The registers will initially be 32-bits wide, as this makes targeting of GCC slightly less complex.  At a later stage, these may be decreased if it is believed that there is a performance advantage in doing this (either in time or space complexity).  There will probably be at least 16 registers, most of which will be general purpose.  There will also be a program counter, and an X-Register to store intermediate results from the ALU. Furthermore, a status register will store state values for the ALU, indicating such conditions as overflow, underflow, carry, etc.  

Development Process Walkthrough

C Source Code

The C source code will be an application which has been designed and written to compile and execute on a generic PC architecture.  In the case of our system, this will consist of an MP3 encoder/decoder and a simple public key encryption algorithm.  It is essential that the source code is fully functional on the PC and will compile successfully using the Gnu C Compiler, GCC, without error.

Profiling

Profiling will essentially determine which parts of the compiled code are “hotspots”, i.e. where a significant proportion of the execution time is focussed.  As this is a complex process, a discussion of the intricacies and methods that will be invoked is contained elsewhere in this document.

Static Analysis

Static Analysis is the process of obtaining a breakdown of the instruction usage for a piece of source code, simply by counting the different instructions for a specific piece of application assembly language.  One or more sections of code will be selected to undergo this analysis, from the “hotspots” identified by the profiling process.  This code will then be compiled (but not assembled) for the generic MIPS architecture.  The aim here is to decide which instructions are most and least frequently used, so that sections of the MIPS processor implementation we aim to use as a starting point may be removed if deemed redundant. 

GCC

The output produced by GCC will be a three-address format based on a RISC-like load/store architecture.  In this model, only the load and store operations are able to operate on main memory, with all other instructions operating on registers.  A “parallelising compiler” can be used to optimise program parallelism by taking the three address instructions and generating the Very Long Instruction Word (VLIW) code, in which an instruction can contain more than one operation.

Simulation

The aim of simulation is to ensure the version of the software compiled and run on the ASIP is functionally equivalent to the original software implementation.  The outputs of the two programs are compared to identify differences which may signify errors in either the compiler or the processor model.  Due to architecture differences, e.g. floating point vs. fixed point arithmetic, reasonable tolerances and methods of comparison must be identified.  This may include subjective metrics such as listening tests as well as more rigidly defined comparisons.

Further Instruction Set Analysis

Initial analysis will focus on minimising the number of instructions performed in total by the processor for common instruction sequences.  It is envisaged that the development cycle of the processor model will terminate when one of two outcomes occurs.  Either the maximum number of gates on the FPGA will be reached, or the processor will have developed such that any modifications to the instruction set will have a detrimental effect on the execution speed.  This will be determined with rigorous benchmarking.

Changes & Optimisations

Changes that will be made to the processor model will take two forms.

1. Mandatory changes signified by incorrect results being produced from simulation.  These are likely to be caused by errors in the conversion of GCC for the processor model, or by errors in the Handel-C implementing the processor model.  These changes are necessary for the successful operation of the system.

2. Optimisation changes identified during analysis of the code.  These changes include combining simple operations into Very Long Instruction Word (VLIW) operations to exploit a higher degree of parallelism, removing instructions which are never or only rarely used

Changes and optimisations will occur at each iteration of the spiral model.  This will result a processor model that will evolve rather than the end artefact being initially fully designed.

MIPS

The MIPS (Microprocessor without Interlocked Piped Stages) has been frequently used as a teaching model for students. This is centred around the MIPS simple instruction set and  it’s logical load store architecture.

We chose to implement a MIPS instruction set for the following reasons. Firstly it a RISC core processor. This means it uses a load store architecture with three-register operations. This provides an initial simpler approach to addressing when compared with other models. Furthermore register operations have a lower latency than equivalent in-memory operations, and makes simpler for compilers to optimise register allocation
. An additional reason for choosing the MIPS as a starting point is it is open source with several versions available for download off the Internet. Furthermore GCC has already been targeted to compile for a MIPS based architecture. This provides a solid platform from which we can further develop the instruction set. The final reason we chose a MIPS as a starting point was prior experience. 

� Generating Instruction Sets and Microarchitectures from Applications, Ing-Jer Huang and Alvin M. Despain, Dept of Electrical Engineering – Systems, University of Southern California (Date unknown).





� MIPS32 Architecture for Programmers volume I: Introduction to the MIPS32 Architecture, MIPS Technologies Inc. (March 2001).






Page 1 of 4

